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► Targeted therapies for acute myeloid leukemia (AML) exhibit off-tumor 
toxicity due to their inability to differentiate between leukemic cells from 
healthy blood cells that express the same cell surface antigen.

► Removal of surface antigens from allogeneic hematopoietic stem cell 
transplants (HSCTs), thereby allows the therapies to specifically target 
leukemic cells by sparing the gene-edited, antigen null grafts, is a novel 
approach to enable post-transplant targeted therapies for AML. This 
strategy has the potential to enable the next generation of HSCTs.1-3

► AML may still pose challenges due to target antigen heterogeneity as 
well as the phenomenon of antigen escape. Use of multi-specific 
immuno-therapies, simultaneously targeting multiple cell surface 
antigens, may provide greater efficacy. 

► Our approach to create multi-knockout HSCTs will allow the multi-
therapies to specifically target leukemic cells. However, multiplex editing 
with CRISPR/Cas9 poses translocation risk.

► Here, we propose an optimized editing process which generates 
efficient knockout of two targets with drastically reduced translocation 
as evidenced by a long-term engraftment study in a xeno-transplant 
mouse model.
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CONCLUSION

► These findings support the promising utility of 
multiplex editing, enhanced by our improved 
cell engineering process, to generate 
multiplex-engineered next-generation 
HSCTs—enabling the administration of multi-
targeted therapies with reduced on-target, 
off-tumor toxicity in AML.

Fig. 3. Dual-Edited HSPCs Maintain High Viability and %LT-HSCs Fig. 6. Sequential RNP Delivery Reduces On-Target Translocations

► Translocation assessment using ddPCR: Compared to simultaneous delivery (RNP1 + RNP2), 
Sequential RNP delivery (RNP1 → RNP2) reduces persistence of translocation to near-
background levels of detection (0.02%).

► Number on the X-axis represent individual animal.

► Multiplexed NGS showed similar 
trend of reduction as ddPCR for 
on-target translocations.

► Number on the X axis represent 
individual animal. 

Fig. 5. On-Target Editing Persist Both Targets Post 16-Week 
Engraftment

► IDT rhAMP-Seq was used for on-target editing assessment.5

► RNP1 → RNP2 Sequential delivery group.

► Quantification of on-target editing by multiplexed next-generation 
sequencing (NGS) revealed no reduction in total editing between 
dual-edited input and BM cells, indicating the gene modifications in 
dual engineered cells persist after engraftment.

► AO/PI staining was used to assess viability of all samples, and 
the overall viability of dual-edited input HSPCs was >70%. 

*gCtrl → gCtrl = Sequential delivery of non-targeting guide, RNP1+RNP2 = Simultaneous delivery group, RNP1 → RNP2 = Sequential delivery group 

► The proportion of CD34+CD38-CD45RA-CD90+CD49f+ putative 
long-term hematopoietic stem cells (LT-HSCs) in input cells were 
similar (1-2%) between unedited and dual-edited cells.4
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Fig. 1. Multiplex Editing Schematic 

METHODS

OBJECTIVE
► Determine long-term reconstitution potential of multiedited HSPCs. 

► Determine persistence of on-target editing and translocations through the 
long-term reconstitution process.

► Sequential ribonucleoprotein complex (RNP) delivery to reduce
translocation risk.

Fig. 4. Engraftment and Differentiation Potential of Dual-Edited 
HSPCs Are Comparable to Culture-Alone HSPCs

► In vivo engraftment potential of dual-edited cells was maintained 
long term, with average chimerism of hCD45+ cells in mice 
transplanted with dual knock-out (KO) HSPCs similar to those 
transplanted with unedited HSPCs (53.36±11.80% vs 
47.45±18.03%, respectively). Dots represent individual animals. 
(Statistical test, 1-way analysis of variance)  

► Dual-edited cells also 
maintained normal 
differentiation potential as 
judged by multilineage 
reconstitution by in vitro
CFU assay.

Fig. 2. Experimental Overview
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