In Depth Assessment of Off-target Editing by CRISPR/Cas9 in VOR33, an Engineered
Hematopoietic Stem Cell Transplant for the Treatment of Acute Myeloid Leukemia
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INTRODUCTION I

> VOR33 s an engineered allogeneic hematopoietic stem cell (HSC) transplant for
treatment of acute myeloid leukemia (AML) in which the CD33 surface antigen is
removed by CRISPR/Cas gene editing (Figure 1).1

> This removal enables post-engraftment immunotherapeutic targeting of leukemic cells
that display CD33 while sparing the CD33 gene-edited graft (Figure 2).24

> To ensure safety of gene-edited CD34+ hematopoietic stem and progenitor cells
(HSPCs) and engrafted progeny, a well-defined analyses of unintended and off-target
editing is necessary. However, paradigms for off-target analyses of gene-edited ex vivo
therapies are not well established

Figure 1. VOR33 Engineering

CRISPR/Cas9 knockout of biologically dispensable CD33
cell surface antigen in CD34+ HSPCs to create transplantable
engineered HSCs (eHSCs) invisible to CD33-targeted
immunotherapies

Figure 2. VOR33 Clinical Process
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RESULTS 4

Analysis of on-target SVs by long-read sequencing revealed total frequencies of
7%-9% across 3 VOR33 research-scale batches. Large deletions account for the
majority of SVs. Large on-target inversions and insertions were detected at very low
frequencies, similar to those previously reported for CRISPR/Cas9 (Figure 8).¢ Fine
mapping of the SVs suggests no perceivable impact on the safety or efficacy of VOR33,
as the primary mechanism of action (MOA) by CD33 disruption is preserved.

> By conducting GUIDE-seq analysis on 4 research-scale batches, a total of 29 sites
were identified, with 10 showing high homology to the on-target ite (S5 mismatchigaps)
(Table 1). The remaining 19 sites had moderate/poor homology (27 mi
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Homology Dependent Assessment of Off-Target Editing

Table 2. Research Scale Hybrid Capture NGS (4 batches)

Prediction Insilico
Batches 4 batches with matched unedited controls
ot 2 male, 2 female
Sites tested >2300
Sites with significant and reproducible indel 0
control threshold
Sites with reproducible indel frequency 0

» In 4 research scale VOR33 batches, indel frequencies were assessed by hybrid

Figure 4. In Silico Off-Target Prediction
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pture-based NGS at >2300 in silico predicted sites (Table 2). In 7 VOR33 batches
manufactured at clinical scale, indel frequencies were assessed by NGS at 2369 in
silico and GUIDE-seq identified sites (reads 2500) (Table 3). Across batches, no
significant and reproducible off-target sites were observed.

> No reproducible and significantly edited off-target site was observed across 4 batches and >2300
tested sites. In total, >24,000 individual site assessments were performed across edited and control

research scale samples.

Table 3. Comprehensive Clinical Scale Hybrid Capture NGS (7 batches)

Figure 5. Unbiased Identification of
Off-Target Sites: GUIDE-seq®
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OBJECTIVE I

> To enable rigorous assessment of unintended and off-target editing events by CRISPR/
Cas9 in VOR33 using an ensemble of sensitive genomic assays and approaches.

OFF-TARGET STRATEGY D

Potential Off-Target Concerns

Analytic Approach

Unintended on-target
structural variation (SV)

Long-range PCR and long-read DNA
sequencing (Figure 3)

Off-target sites with high homology
to CD33 on-target site
Off-target sites with moderate/poor
homology to CD33 on-target site

In silico prediction of possible genomic
sites <5 mismatches (Figure 4)
Unbiased identification by GUIDE-seq
(Figure 5)

Hybrid capture-based next generation

Quantifying off-target indel sequencing (NGS) (Figure 6)

Gross genomic instability G-banded karyotyping (Figure 7)
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Figure 7. Genomic Stability Detection:
G-banded Karyotyping
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> Lastly, karyotyping revealed no detectable abnormalities across muliple research and Prediction In silico and GUIDE-seq
clinical scale batches, indicating that VOR33 displays preserved genomic stability Batches 7 batches with matched unedited controls
(Figure 9, Figure 10). m, 6 male, 1 fermale
. N PR tes tested >2300
Unintended On-Target Structural Variant Characterization s.,asw,.hs.gmmmm reproducible indel o
control threshold
Sites with reproducible indel frequer
Figure 8. Deletions Insertions/Inversions reproducible indel frequency 0
p,\",\"¢ WA NN » No reproducible and significantly edited off-target site was observed across all 7 batches and >2300
CxoRe tested sites. Intotal, >33,000 individual site assessments were performed across edited and control
Comae’ deavege ste Inversions and large diinical scale samples.
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Figure 9. Research Scale
(4 batches)
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> The VOR33 engineering process is robust and , with no in off-target or patterns in multiple independent cell

batches generated with various guide RNA lots, manufacturing scales, and delivery methods.

> An expansive appraisal of off-target editing across multiple VOR33 products was achieved through long-read

frequencies at >2300 genomic sites, and karyotyping.

of indel

GUIDE-seq,

> This assessment of off-target editing establishes a rigorous and clinically translatable safety framework to evaluate genotoxicity in CD34+ HSPC-based cell

therapies for the treatment of AML.
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