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A machine learning approach incorporating germline information improves 
genotyping of CRISPR-Cas9 gene editing events at single cell resolution 
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CRISPR-Cas9-based gene editing is a powerful approach to improve our ability 
to treat specific diseases with an unmet medical need. Developing robust cell 
therapies with genome engineering requires rigorous assessment of allelism at 
single cell resolution, especially when multiple targets are considered. 
Recently, droplet-based targeted single cell DNA sequencing (scDNAseq) has 
been used to genotype selected loci across thousands of cells enabling high-
throughput assessment of gene editing efficiency. However, several technical 
issues must be accounted for including low sequencing depth and PCR 
amplification bias due to low input DNA in each droplet. These artifacts skew 
allele read frequencies in the readout which can confound accurate genotyping.

In this study we:

▷ Addressed these issues by developing a machine learning method that 
learns the extent of this skew from single nucleotide polymorphisms 
(SNPs) across all cells and amplicons 

▷ Determined that SNPs can be initially identified through pseudobulk
genotyping and in theory should be detectable in every cell because they 
occur in the germline

▷ Analyzed scDNAseq data generated from Cas9-edited human 
hematopoietic stem and progenitor cell (HSPC) samples before and after 
in vivo transplantation into mouse bone marrow 

▷ Found that the model trained and cross-validated on observed 
heterozygous and homozygous SNPs across all cells was able to predict 
genotype with greater accuracy than GATK
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Fig. 1) Overview of experimental and computational pipeline A. Experimental design of HSPC gene 
editing and transplantation. Human primary HSPCs were edited on one gene and transplanted into 
mouse bone marrow. Droplet-based targeted single cell DNA sequencing was performed on both edited 
input HSPCs and HSPCs collected from mouse bone marrow 16 weeks after transplantation. Amplicon panel 
used covered editing site and several heterozygous SNPs B. Flowchart of computational method for single 
cell genotyping of CRISPR-Cas9 editing. Genotyping of single cells was performed through a 4-step process 
involving robust SNP identification, allele quantification with CRISPResso2, model training, and prediction.
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Fig. 2) Allele frequencies at single cell resolution harbor technical artifacts A. Alignment profiles of pseudobulk and single cell reads. Amplification bias can cause a 
Het to Hom transition in single cell readout. B. Allele frequency distribution of allele with most mapped reads (dominant allele) across cells. Five SNPs with varying 
dropout rates were identified from pseudobulk and used in downstream analysis. C. Amplification bias and genotype ambiguity is associated with low read depth 
where dominant allele frequency distributions deviate from the expected 50% and 100% frequencies for heterozygous and homozygous alleles, respectively. Gray 
shading corresponds to range of ambiguous frequencies observed in CRISPResso2 output. D. Normalized depth (reads per thousand mapped reads) associates more 
strongly with dropouts compared to absolute read depth.

Fig. 3) Training machine learning models with germline information A. Construction and organization of tabular input 
data. Mapped read frequencies for the dominant allele, secondary allele, and noise allele were used along with 
normalized read depth as features. Each observation consists of a cell barcode (3219 cells) and SNP pair. B. Evaluation of 
different machine learning models trained on heterozygous, homozygous, and dropout labeled data. Repeated 10-fold 
cross validation with class down-sampling was used to compare prediction accuracy across models. C. Comparison of 
gradient boosted machine (GBM) model with GATK. Each SNP was left out as testing data and the remaining SNPs were 
used to train GBM model. GATK was implemented on a per-cell basis after read mapping. Observations predicted as 
“dropouts” by machine learning were removed prior to comparison. GATK does not incorporate dropout detection.

Fig. 4) Identifying true dropout cells at edit site using phase information from adjacent heterozygous SNPs 
A. Pseudobulk and single cell read alignment profiles from scDNAseq readout of edited HSPCs transplanted into 
mouse bone marrow for 16 weeks. Mapped reads show heterozygous SNP phased with CRISPR-Cas9 edit site. Single 
cell profile shows Het to Hom transition at SNP site indicating a dropout event. B. Binned scatterplot showing joint 
allele frequencies between edit site and phased SNP across cells. Non-uniformity of cell density suggests the 
presence of distinct clusters corresponding to heterozygous, homozygous, and dropout cells. K-means clustering of 
edit site and SNP allele frequencies automates dropout detection. C. Percent breakdown of editing genotype 
predicted by gradient boosted machine model trained on allele frequencies from 7 SNPs after removing dropouts. 
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Cell-SNP (ground truth) Allele 1 Allele 2 Allele 3 RPK

Cell1 | Hom SNP1 80% 9% 1% 9

Cell1 | Het SNP1 40% 35% 25% 8

Cell2 | Hom SNP1 70% 20% 10% 10

Cell2 | Het SNP1 (dropout) 95% 5 0% 2

Cell-SNP (ground 
truth)

Allele 1 Allele 2 Allele 3 RPK Predicted genotype Prediction 
probability

Cell1 | Hom SNP2 90% 8% 2% 11 Hom 85%

Cell1 | Het SNP2 70% 30% 0% 10 Het 75%

Cell2 | Hom SNP2 90% 10% 0% 12 Hom 90%

Cell2 | Het SNP2 80% 19% 1% 2 Dropout 61%

Training set

Test set

A. B.

C.

CRISPR-Cas9 technology has enabled the field of cell therapy to advance rapidly due to its on-target 
precision and relatively low off-target consequences. However, producing robust and safe cell therapies 
through gene editing requires careful optimization and vetting of cell products. This is especially true 
with multi-target editing, which has received recent attention in the cell therapy community. This will 
likely introduce greater complexity into the data analysis procedure and affect downstream 
interpretation. To ensure that a high percentage of cells do indeed receive a biallelic edit becomes a key 
question that cannot be addressed through bulk sequencing. By leveraging both state-of-the-art 
commercially available scDNAseq technology and purpose-built analytical methodologies we can study 
gene editing efficiency at single cell resolution providing unprecedented insight into the biology of cell 
therapy treatments. In this study, we explore technical artifacts associated with scDNAseq and develop 
a novel in silico methodology to address them. We tested the method on data derived from an 
experiment that mirrors the pre-clinical development process of a CRISPR-Cas9-based cell therapy. We 
find that our approach outperforms methods designed for bulk sequencing data by incorporating 
germline and artifact information that is embedded in the readout. Model accuracy may also improve as 
more experimental data becomes available for training. Lastly, our method can be extended to data from 
other gene editing technologies including base and prime editing.
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Abbreviations:

SNP: Single Nucleotide Polymorphism
WT: Wild Type
Hom: Homozygous
Het: Heterozygous

HSPC: Hematopoietic Stem and Progenitor Cell
scDNAseq: Single Cell DNA Sequencing
PCR: Polymerase Chain Reaction
GATK: Genome Analysis Toolkit

CRISPR: Clustered Regularly Interspaced Short 
Palindromic Repeats
Cas9: CRISPR-associated protein 9
gRNA: guide RNA


