

## A single cell DNA sequencing resource and computational approach to quantify CRISPR-Cas9 gene editing allelism

Matthew H. Ung<sup>1,\*</sup>, Ruijia Wang<sup>1,\*</sup>, Gabriella Angelini<sup>1</sup>, Juliana Xavier-Ferrucio<sup>1</sup>, Michelle Lin<sup>1</sup>, Tirtha Chakraborty<sup>1</sup>, Gary Ge<sup>1</sup> <sup>1</sup>Vor Bio, Cambridge, MA, USA, \*Authors contributed equally

## Introduction

CRISPR-Cas9 gene editing is a powerful approach to improve our ability to treat specific diseases with an unmet medical need. Engineering cell therapies requires accurate assessment of allelism as editing patterns can vary across cells and cause phenotypic heterogeneity in a sample. Bulk sequencing is the current standard for assessing editing frequency but is not always sufficient for quantifying the diversity of bi- and monoallelic knockout events in a cell population. This limitation can delay development of more complex cell therapies involving multigenic editing. Recently, droplet-based targeted single cell DNA sequencing (scDNAseq) has been used to genotype select loci across thousands of cells enabling high-throughput assessment of gene editing efficiency at unprecedented resolution. However, to systematically analyze these data we must address technical artifacts that could arise including low coverage over the editing site, PCR amplification bias, and multiplets; all of which confound accurate genotyping and quantification of edited and unedited cells in a sample. In this study, we introduce a "ground truth" single cell gene editing data resource (>20,000 cells) to explore these artifacts in a controlled setting and develop computational solutions to circumvent issues that may arise when applying this technology to gene editing.

## Results

| HL-60 clone                                                                                                                                                                                                |                                                                                                                                                                                                      | (cut site indicated by 1)                                                                                                                                                                                                                                      | Electropherogram<br>(cut site indicated by <sup>i</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>B.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100% Het                                                                                                                                                                                                                                                     | 35% Hom, 55% Het, 10% W                                                                 | Γ 55%                                                                                  | • Hom, 35%                                | % Het, 10               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|
| Wildtype                                                                                                                                                                                                   |                                                                                                                                                                                                      | ACCACAC   TGCAAAC                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n cockta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -                                                                                                                                                                                                                                                          |                                                                                         |                                                                                        |                                           |                         |
| Homozygous e                                                                                                                                                                                               | dit (+1 ins)                                                                                                                                                                                         | ACCACAC   <b>+T</b> TGCAAAC                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al reads i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i0 -<br>i0 -                                                                                                                                                                                                                                                 |                                                                                         |                                                                                        |                                           |                         |
| Compound het                                                                                                                                                                                               | terozygous edit (-8, -9)                                                                                                                                                                             | ACCA  ACAATAGCC<br>ACCACA-  ATAGCC                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % of tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -                                                                                                                                                                                                                                                          |                                                                                         |                                                                                        |                                           |                         |
| Chr 12                                                                                                                                                                                                     |                                                                                                                                                                                                      | Homo sa                                                                                                                                                                                                                                                        | apiens 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | –9Del –8Del +1Ins WT                                                                                                                                                                                                                                         | –9Del –8Del +1Ins WT                                                                    | -9De                                                                                   | el –8Del                                  | +1Ins                   |
| Target gene<br>Wildtype                                                                                                                                                                                    | p13.33 p13.31 p13.2 p12.3                                                                                                                                                                            | p12.2 p11.23 p11.21 q11 q13.11 q13.13 q13.3                                                                                                                                                                                                                    | q14.2 q15 q21.1 q21.2 q21.31 q21.32 q22 q23.1 q23.2 q24.11 q24.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 124.31 q24.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cell barcode                                                                                                                                                                                                                                                 | Genotype                                                                                | +1lns                                                                                  | WT -8                                     | 8Del                    |
| Homozygous                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAACCTAGGTAGCATC-1                                                                                                                                                                                                                                           | WT/Unedited                                                                             | 0                                                                                      | 306                                       | 0                       |
|                                                                                                                                                                                                            |                                                                                                                                                                                                      | C+                                                                                                                                                                                                                                                             | 1:97% (L->INS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TCACCTGGGAATTCAC-1                                                                                                                                                                                                                                           | Homozygous edit                                                                         | 344                                                                                    | 0                                         | 0                       |
| Heterozygous                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAGCAGTCCTCCAATC-1                                                                                                                                                                                                                                           | Heterozygous edit                                                                       | 0                                                                                      | 0                                         | 26                      |
| Transparent multiplet                                                                                                                                                                                      | c                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATTGGTGATACCGCGTT-1                                                                                                                                                                                                                                          | Transparent multiplet                                                                   | 54                                                                                     | 0                                         | 26                      |
| Opaque multiplet                                                                                                                                                                                           | Ŧ                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                | 1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | СС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TCAGGTGCGTACATCT-1                                                                                                                                                                                                                                           | Opaque multiplet                                                                        | 0                                                                                      | 34                                        | 72                      |
| Het dropout                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GGTCTGAACGCTATGT-1                                                                                                                                                                                                                                           | Heterozygous                                                                            | 0                                                                                      | 0                                         | 0                       |
| quencing of r<br>ee artificial c<br>mozygous ce<br>d opaque mu                                                                                                                                             | monoclonal cell line<br>ocktails. <b>C.</b> Single<br>ells have a +1 inse<br>ultiplets display a d                                                                                                   | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis <sup>5</sup><br>5% Hom, 55% Het, 10% WT                                                                                                | target gene exclusive to each clone. <b>B.</b><br>es (genome browser) and allele read co<br>ells have a -8 and -9 compound deletion<br>tent genotype. Heterozygous dropouts a                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beudobulk<br>unts (table) of<br>at the editing<br>are falsely "ho<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f clone-specific ger<br>site. Transparent<br>mozygous" for eith                                                                                                                                                                                              | notypes observed<br>multiplets display<br>ner the -8 or -9 del                          | in dat<br>a tripl<br>letion                                                            | a.<br>oid pr<br>allele                    | rofil<br>9              |
| quencing of r<br>ee artificial c<br>mozygous ce<br>d opaque mu                                                                                                                                             | monoclonal cell line<br>ocktails. <b>C.</b> Single<br>ells have a +1 inse<br>ultiplets display a d                                                                                                   | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis<br>5% Hom, 55% Het, 10% WT                                                                                                             | target gene exclusive to each clone. <b>B</b> .<br>es (genome browser) and allele read concells have a -8 and -9 compound deletion<br>tent genotype. Heterozygous dropouts a                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f clone-specific ger<br>site. Transparent<br>mozygous" for eith<br>Mixture                                                                                                                                                                                   | notypes observed<br>multiplets display<br>ner the -8 or -9 del<br>GUMM predicted ratio  | in dat<br>a tripl<br>letion<br>True ra                                                 | a.<br>oid pr<br>allele                    | rofil<br>9.<br><br>0% V |
| quencing of r<br>ree artificial c<br>mozygous ce<br>d opaque mu                                                                                                                                            | nonoclonal cell line<br>ocktails. <b>C.</b> Single<br>ells have a +1 inse<br>ultiplets display a d<br>3<br>3<br>3                                                                                    | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis<br>5% Hom, 55% Het, 10% WT                                                                                                             | <b>Genotype</b><br><b>Genotype</b><br><b>Genotype</b><br><b>Hom edit</b><br>WT<br>Het edit<br>Transparent mult<br>Opaque multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B.<br>60<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f clone-specific ger<br>site. Transparent<br>mozygous" for eith<br>Mixture                                                                                                                                                                                   | notypes observed<br>multiplets display<br>ner the -8 or -9 del<br>GUMM predicted ratio  | in dat<br>a tripl<br>letion<br>True ra                                                 | a.<br>oid pr<br>allele                    | rofil<br><br>           |
| quencing of r<br>ree artificial c<br>omozygous ce<br>d opaque mu                                                                                                                                           | nonoclonal cell line<br>ocktails. <b>C.</b> Single<br>ells have a +1 inse<br>ultiplets display a d<br>33                                                                                             | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis<br>5% Hom, 55% Het, 10% WT<br>5% Hom, 35% Het, 10% WT                                                                                  | target gene exclusive to each clone. B.<br>es (genome browser) and allele read con-<br>ells have a -8 and -9 compound deletion<br>tent genotype. Heterozygous dropouts a                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pseudobulk<br>unts (table) of<br>at the editing<br>are falsely "ho<br>B.<br>60<br>iplet<br>iplet<br>20<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f clone-specific ger<br>site. Transparent<br>mozygous" for eith<br>Mixture 10<br>35% Hom, 55% Het, 10                                                                                                                                                        | notypes observed<br>multiplets display<br>her the -8 or -9 del<br>GUMM predicted ratio  | in dat<br>a tripl<br>letion<br>True ra<br>om, 35%                                      | a.<br>oid pr<br>allele                    | rofil<br><br>           |
| quencing of r<br>ree artificial c<br>mozygous ce<br>d opaque mu<br>ns<br>r<br>el<br>el<br>el<br>el<br>el<br>el<br>el<br>el<br>el<br>el<br>el<br>el<br>el                                                   | monoclonal cell line<br>ocktails. <b>C</b> . Single<br>ells have a +1 inse<br>ultiplets display a d<br>33<br>54                                                                                      | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis<br>5% Hom, 55% Het, 10% WT<br>5% Hom, 35% Het, 10% WT                                                                                  | <pre>target gene exclusive to each clone. B. es (genome browser) and allele read concells have a -8 and -9 compound deletion tent genotype. Heterozygous dropouts a </pre> Genotype Hom edit WT Heteroit Organization Scaled log AF 2 1 0 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Pseudobulk<br>unts (table) of<br>at the editing<br>are falsely "ho<br>B.<br>B.<br>(iplet) 60<br>(introduction of the second<br>second of the second<br>of the editing<br>are falsely "ho<br>based of the second<br>second of the second of the second<br>second of the second of the second<br>second of the second of the se | f clone-specific ger<br>site. Transparent<br>mozygous" for eith<br>Mixture<br>35% Hom, 55% Het, 10                                                                                                                                                           | notypes observed<br>multiplets display<br>her the -8 or -9 del<br>GUMM predicted ratio  | in dat<br>a tripi<br>letion<br>True ra<br>om, 35%                                      | a.<br>oid pr<br>allele<br>atio            | rofil<br><br>0% V       |
| equencing of r<br>ree artificial c<br>omozygous ce<br>ad opaque mu<br>ns<br>VT<br>Jel<br>Jel<br>Ins<br>VT<br>Jel<br>Jel<br>Jel<br>Jel<br>Sure 4) Au<br>c the four pos<br>ell with expec<br>Ils in cocktail | nonoclonal cell line<br>ocktails. <b>C.</b> Single<br>ells have a +1 inse<br>ultiplets display a d<br>33<br>34<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55         | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis<br>5% Hom, 55% Het, 10% WT<br>5% Hom, 35% Het, 10% WT<br>5% Hom, 35% Het, 10% WT<br>5% Hom, 35% Het, 10% WT                            | target gene exclusive to each clone. <b>B</b> .<br>es (genome browser) and allele read cor-<br>ells have a -8 and -9 compound deletion<br>tent genotype. Heterozygous dropouts a                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mixture co<br>at the editing<br>are falsely "ho<br>B.<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figuration of cities of homes with true mixing                                                                                                                                                                                                               | anotypes observed<br>multiplets display<br>her the -8 or -9 del<br>GUMM predicted ratio | in dat<br>a trip<br>letion<br>True ra<br>om, 35%<br>scaled<br>types<br>/gous<br>ing or | a.<br>oid pr<br>allele<br>atio<br>Het, 10 | uen<br>elate            |
| equencing of r<br>ree artificial c<br>omozygous ce<br>ad opaque mu<br>ns<br>vT<br>lel<br>lel<br>s<br>gure 4) Au<br>the four pos<br>ell with expec<br>lls in cocktail<br>ultiplets.                         | monoclonal cell line<br>ocktails. <b>C.</b> Single<br>ells have a +1 inse<br>ultiplets display a d<br>3<br><b>tomated genot</b><br>sible allele combin<br>ted allele frequence<br>after genotype pre | es show distinct alleles of<br>cell read alignment profile<br>rtion and heterozygous ce<br>iploid profile of a non-exis<br>5% Hom, 55% Het, 10% WT<br>5% Hom, 35% Het, 10% WT | target gene exclusive to each clone. <b>B</b> .<br>es (genome browser) and allele read co<br>ells have a -8 and -9 compound deletion<br>tent genotype. Heterozygous dropouts a<br><b>Genotype</b><br>Hom edit<br>WT<br>Het edit<br>Transparent mult<br>Opaque multiple<br><b>Scaled log AF</b><br>2<br>1<br>0<br>1<br>1<br>2<br>1<br>1<br>0<br>1<br>1<br>2<br>1<br>1<br>0<br>1<br>1<br>2<br>1<br>1<br>0<br>1<br>1<br>2<br>1<br>1<br>0<br>1<br>1<br>1<br>2<br>1<br>1<br>0<br>1<br>1<br>1<br>1                                                                                                                                                  | mixture cc<br>ed by Gaussi<br>. Estimated f<br>ngly correlate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figura Interation of cite<br>f clone-specific ger<br>site. Transparent<br>mozygous" for eith<br>Mixture<br>35% Hom, 55% Het, 10<br>Mixture<br>Heter<br>the eith<br>Homeit<br>Composition A. Han mixture modeling<br>requencies of hom<br>es with true mixing | anotypes observed<br>multiplets display<br>her the -8 or -9 del<br>GUMM predicted ratio | in dat<br>a trip<br>letion<br>True ra<br>om, 35%<br>scaled<br>ygous<br>ing or          | a.<br>oid pr<br>allele<br>atio<br>Het, 10 | uen<br>elat<br>WT       |







me editing sequence analysis. *Nat Biotechnology* **37**, 224–226 (2019). ne CRISPR Journal 5, 123-130 (2022). RISPR-edited gene modifications. Genome Biology 21, 266 (2020). 4. Scrucca, L., Fop, M., Murphy, T. B. and Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models The R Journal 8, 289-317 (2016).

bioinformatic solution for researchers in the gene editing community looking to characterize complex genotypes in engineered cell populations.

> **Abbreviations** WT: Wild type PCR: Polymerase Chain Reaction Hom: Homozygous Het: Heterozygous

PC: Principal Component AF: Allele Frequency **Del:** Deletion



**P203**