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Conclusion

Engineering cell therapies requires accurate assessment of gene 
modified allelism because editing patterns can vary across cells and 
cause phenotypic heterogeneity in a sample. This can delay 
development of complex cell therapies involving the use of multigenic 
editing. Recently, droplet-based targeted single cell DNA sequencing 
(scDNAseq) has been used to genotype select loci across thousands 
of cells enabling high-throughput assessment of gene editing 
efficiency. Here, we developed a novel computational workflow called 
GUMM (Genotyping Using Mixture Models) that systematically infers 
single cell allelism at select loci from scDNAseq data by fitting a 
series of Gaussian mixture models (GMMs) to allele read counts 
generated by CRISPResso2; GUMM is uniquely well-suited for 
analyzing CRISPR-Cas9 gene editing experiments where cells in the 
sample are genetically homogenous and differ only at the intended 
editing site(s). GUMM outputs a probabilistic prediction of cell 
genotype and addresses technical artifacts including low coverage at 
the editing site, PCR amplification imbalance, multiplets, and 
sequencing error. Moreover, we constructed a gene editing “ground 
truth” scDNAseq atlas to deeply characterize these technical artifacts 
and leveraged it to optimize GUMM.

Figure 1) Construction of a “ground truth” gene editing scDNAseq resource and analysis workflow 
A. We used CRISPR-Cas9 to create edited HL-60 cells and expanded clones with distinct homozygous and compound heterozygous indel profiles. Clones were 
mixed at pre-defined ratios to create artificial cocktails that mimic the potential editing diversity of a CRISPR-Cas9 experiment. Three unique cocktails were 
sequenced to generate an atlas containing single cell readout for more than 20,000 cells. B. Overview of computational pipeline used to analyze single cell DNA 
sequencing (scDNAseq) data from artificial cocktails. Pipeline consists of read mapping and barcode deconvolution, allele quantification with CRISPResso21, and 
artifact-aware genotyping with GUMM (Genotyping Using Mixture Models).

A.

C.

Figure 2) Artifact-aware single cell genotyping of artificial cocktails using GUMM 
A. CRISPResso2 output of allele counts for six distinct droplet types observed in “ground truth” data resource. Homozygous droplets are identified by 
a +1 insertion and heterozygous cells are characterized by a -8/-9 compound deletion B. Illustration of four potential artifacts observed in scDNAseq
data that can confound allelism assessment in gene editing experiments. Examples of allele frequencies (AF) corresponding to these scenarios are 
provided  C. Diagram of the GUMM workflow that applies a series of Gaussian mixture models (GMM) to identify homozygous cells, true compound 
heterozygous cells (Het edit), transparent multiplets (triploid), and opaque multiplets (diploid). The workflow starts with allele read counts quantified by 
CRISPResso2 and automates the cell genotyping process to output cell-level genotype predictions and sample-level composition estimates. Multiplets
are simultaneously flagged using ploidy information and principal component analysis (PCA) of allele counts. D. Distribution of dominant allele 
frequency across all droplets and identification of homozygous cells by GUMM. scDNAseq protocol for 35% Hom, 55% Het, 10% WT cocktail included 
an additional cell filtering step prior to droplet barcoding to decrease multiplet rate. E. Distribution of log2 noise allele ratio which was computed by 
taking the read count ratio between the second and third most frequent alleles for each droplet. GUMM fits a univariate GMM to this statistic to identify 
transparent multiplets. F. Correlogram showing allele correlation structure revealing heterozygous alleles with high co-occurrence. PCA was performed 
on allele counts to generate low dimensional representation of data. G. Scatterplots showing opaque multiplet identification by fitting GUMM to first 
two principal components. Dense cluster of droplets correspond to true heterozygous cells with -8/-9 compound deletion. GUMM is robust to multiplet
contamination in data.

Figure 3) GUMM accurately predicts cell genotype and estimates original cocktail ratios 
A. Heatmaps showing log-transformed frequencies of four possible alleles at edit site across droplets for all three artificial cocktails. Annotation bar indicates genotype or multiplet category predicted by GUMM. Allele frequency patterns of 
predicted genotypes are consistent with “ground truth” B. Bar plots comparing estimated and true cocktail genotype compositions after removing multiplets. The 35% Hom, 55% Het, 10% WT cocktail showed greater deviation from ground truth 
compared to other cocktails due to higher dropout rate which correlates with greater Het composition. C. Simulating heterozygous composition of 55% Hom, 35% Het, 10% WT cocktail by in silico spike-in. Cells were randomly selected from the 
pure 100% heterozygous sample data and computationally added to artificial cocktail data at increasing frequency. This was performed concurrently with cocktail down-sampling to increase the maximum heterozygous rate in the cocktail. Each 
random sampling event was repeated 5 times to ensure robustness. An association between cocktail heterozygous composition and dropout rate was observed in the simulation.

A.

Producing robust and safe cell therapies through gene editing requires careful optimization and vetting of cell products. In this study, we developed a computational workflow called GUMM to rapidly genotype scDNAseq data from 
gene editing experiments. We applied our method to artificial mixtures of CRISPR-Cas9 edited HL-60 clones with distinct allele combinations at a single target gene. Our workflow accurately genotyped individual cells based purely 
on various transformations of the allele frequency readout produced by CRISPResso2. It remained robust to data containing technical artifacts including amplification bias and multiplet contamination. Our study provides both a rich 
data resource and novel bioinformatic solution for researchers in the gene editing community looking to characterize complex genotypes in engineered cell populations.

B.

B.

References
1. Clement, K., Rees, H., Canver, M.C. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnology 37, 224–226 (2019).
2. Prates, M. O., Cabral, C. R. B. & Lachos, V. H. mixsmsn : Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions. J. Stat. Soft. 54, (2013).
3. Scrucca, L., Fop, M., Murphy, T. B. and Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models The R Journal 8, 289-317 (2016).
4. ten Hacken, E., Clement, K., Li, S. et al. High throughput single-cell detection of multiplex CRISPR-edited gene modifications. Genome Biology 21, 266 (2020).

Abbreviations
WT: Wild type
PCR: Polymerase Chain Reaction
Hom: Homozygous
Het: Heterozygous
PCA: Principal Component Analysis

GMM: Gaussian Mixture Model
GUMM: Genotyping Using Mixture Models
AF: Allele Frequency
Del: Deletion
Ins: Insertion

Created with BioRender.com

D.

A.

E.

B. C.

Cell barcode Genotype +1Ins WT -8Del -9Del

AAGCAATCGACTCCAACT-1 WT/Unedited 0 1059 0 4

AACAACTGGAGCCTCGCA-1 Homozygous edit 824 0 0 0

AACAATGCACGTTAATGG-1 Heterozygous edit 0 0 551 462

CACATATCAACCTAGCAC-1 Transparent multiplet 0 205 192 197

AGGAAGGTGCACCAAGAT-1 Opaque multiplet 0 98 0 290
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