P#260

Novel CLL-1-directed CAR-T cells Mediate Potent Antigen-specific Cytolytic Activity in **Mouse Models of Acute Myeloid Leukemia**

Brikena Gjeci¹, Reid Williams¹, Hillary Hoyt¹, Amanda Halfond¹, Giacomo Canesin¹, Julia Etchin¹, Guy Mundelboim¹, Mariana Silva¹, John Lydeard¹, Julian Scherer¹, Tirtha Chakraborty¹

INTRODUCTION

- High-risk acute myeloid leukemia (AML) patients have poor clinical outcomes.
- Chimeric antigen receptor (CAR) T cell therapy holds promise as an immunotherapeutic strategy.
- Targeting C-type lectin-like molecule-1 (CLL-1, CD371) represents an attractive approach, as CLL-1 is highly expressed on AML blasts and leukemic stem cells (1).

OBJECTIVE

Development, functional characterization and side-side comparison of 24 novel CLL-1-directed CAR-T cells.

METHODS

- CLL-1-directed binders were identified by phage display technology and evaluated by flow cytometric, ELISA and Octet analyses.
- Selected binders were used to generate second generation CLL-1 directed CAR constructs with a 4-1BB co-stimulatory domain.
- CLL-1 monoCARs were investigated for antigendependent cytotoxicity, activation and cytokine secretion, for potency at low effector to target (E:T) ratios, for long-term persistence in repeated stimulation assays, and for avidity.
- The top CLL-1 CAR candidates were screen in an in vivo murine xenograft model using HL60 AML cells in NSG mice.

RESULTS

RESULTS (CONT'D)

	EC50 (nM)		Affinity, KD (nM)	Aggregation (% Monomer)	Allelic variant
Binder	Multi- Point FACS (HL-60 cells)	Multi-Point ELISA CLL-1 ECD	Octet CLL-1 ECD	SEC and DLS	Q/K 244 binding
1	3.2	3.4	0.9	83.5	Both
2	59	0.9	5.1	68.4	Both
3	1.8	0.8	1.1	66	Both
4	0.2	1.1	2.6	73.7	Both
5	0.2	1.4	16.6	89	Both
6	1.6	0.6	1.7	81.7	Both
7	0.7	1.9	2.3	78.2	Both
8	2.2	1.5	2.9	88.8	Both

Dynamic Light Scattering analyses and CLL-1 244 K/Q allelic variant binding specificity by ELISA.

Acknowledgments

We thank the Research, Technical Operations, and Lab Operations teams at Vor Bio. We would like to acknowledge Abound Bio for work performed under a collaboration agreement.

¹Vor Bio, Cambridge, MA, USA

Presented at

SITC 2023, November 3–5, 2023.

Cell binding avidity between CLL-1 directed CAR T cells and HL60 WT targets was assessed via acoustic force microfluidic microscopy (z-Movi analysis). HL60 WT cells were seeded on z-Movi® microfluidic chips and CLL-1-directed CARs were serially flushed in and allowed to bind to the target cells prior to the application of an acoustic force ramp. A) The percentage of bound T cells was calculated across entirety of force ramp. B) The percentage of bound T cells at the end of force ramp (1000pN). Data represent mean ± standard deviation from (n=3) replicate

CONCLUSION

- > CLL-1 is expressed on a high percentage of AML blasts and LSCs at both diagnosis and relapse timepoints.
- CLL-1-directed CAR > Novel cells displayed and CLL-1potent specific cytolytic activity, activation and Th1 cytokine secretion, and long-term persistence in vitro.
- Top CLL-1-directed CAR T cell candidates mediated robust and rapid anti-tumor activity in a xenograft mouse model of AML.

References

1. Ma, H., Padmanabhan, I.S., Parmar, S. et al. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol. 2019; 12(1):41

