Gene-Edited Hematopoietic Stem Cells to Enable Next-Generation CAR-T Cell Therapy for the Treatment of AML
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INTRODUCTION I Results: Novel Immunotherapeutic Targeting of ADGRE2

> Iargeted |mmunothe|’r’apy of Acute Myeloid Leukemia (AML) has been limited due to lack of tumor-specific antigens resulting in | gio;v0 3. ADGRE2 is Expressed on AML Blasts and Leukemia Stem Cells Figure 4. ADGRE2 -directed CAR-Ts mediate potent specific cytolytic activity against AML cells in vitro
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» ADGRE?2 is expressed on a high percent of patient AML blasts and LSCs at similar expression intensities at diagnosis and relapse timepoints » ADGRE2-edited HSPCs demonstrate long-term engraftment, multilineage differentiation, and persistence of editing in vivo
» Novel ADGRE2-directed CAR-Ts, engineered with phage display - derived scFv and V,, binders, mediate potent cytolytic activity against ADGRE2-expressing AML cells in vitro » Highly efficient multiplex base editing of ADGRE2 and CD33 leads to robust surface protein KO of both proteins with no impact on myeloid differentiation

» Surface protein expression analysis of ADGRE2 in healthy bone marrow HSPCs and peripheral blood lineages suggests that genetic editing may be necessary to protect healthy hematopoietic
lineages from subsequent immunotherapeutic targeting

» The identification and validation of naturally occurring loss-of-function genetic variants of ADGRE2 provides compelling evidence that it is biologically dispensable. Validation studies in related to single antigen down-regulation, thereby transforming the current treatment approach for AML
endogenous setting are ongoing

» Multiplex genome editing of HSCs paired with subsequent multi-specific immunotherapy can overcome the concerns of tumor heterogeneity and escape mechanisms
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