Urgent Needs in Cancer



VOR33 is our lead eHSC product candidate designed to replace the standard of care in transplant settings. Once the VOR33 cells have engrafted, we believe that patients can be treated with anti-CD33 therapies, such as Mylotarg or VCAR33, with limited on-target toxicity, leading to durable anti-tumor activity and potential cures. In preclinical studies, we have observed that the removal of CD33 provided robust protection of these healthy donor HSCs from the cytotoxic effects of CD33-directed companion therapeutics yet had no deleterious effects on the differentiation or function of hematopoietic cells.

Vor has initiated VBP101, a Phase 1/2 clinical trial in patients with CD33-positive acute myeloid leukemia (AML) who are at high risk of relapse. The primary goals of the trial are to evaluate tolerability and feasibility of the VOR33 stem cell transplant, with a focus on confirming that VOR33 can engraft normally. Following engraftment, patients will be eligible to be treated with Mylotarg, a CD33-directed antibody drug conjugate (ADC) therapy, in order to potentially prolong leukemia-free survival and provide evidence that VOR33 protects against the myelosuppression that typically accompanies treatment with Mylotarg.

Read more about our VBP101 clinical trial.

VCAR33ALLO uses allogeneic healthy donor-derived cells. There has been an increasing appreciation for the value of cell phenotype in CAR-T approaches, and HLA-matched healthy donor cells are a potentially superior cell phenotype with improved persistence and in vivo expansion capability.

Licensed from the National Institutes of Health, VCAR33 is a CD33-directed chimeric antigen receptor T cell (CAR-T) therapy. A T cell therapy using the same CAR construct as VCAR33 is being studied in a multi-site Phase 1/2 clinical trial as an autologous monotherapy bridge-to-transplant for relapsed and/or refractory AML patients, sponsored by the National Marrow Donor Program (NMDP).

*A T cell therapy using the same chimeric antigen receptor construct as VCAR33ALLO is being studied in a Phase 1/2 clinical trial sponsored by the National Marrow Donor Program (“NMDP”), and timing of data release is dependent on the investigators conducting the trial. Although we are not the sponsor of this trial, the NMDP has permitted us to cross-reference its IND for this trial in future IND applications that we may submit with the FDA. While we do not believe that we need to demonstrate comparability of our VCAR33ALLO candidate since we intend to rely on initial clinical data from our VCAR33ALLOprogram, if the U.S. Food and Drug Administration (the “FDA”) disagrees, we may have to demonstrate comparability. The FDA may also reject the sufficiency of the data to support it or disagree with our ability to reference the data generated by NMDP in any IND we may file for VCAR33ALLO or the VOR33 + VCAR33 Treatment System. For more information regarding the NMDP trial, see “Risk Factors – We have not successfully tested our product candidates in clinical trials and any favorable preclinical results are not predictive of results that may be observed in clinical trials” in our Annual Report on Form 10-K for the year ended December 31, 2021 filed with the SEC and such other filings that we may make with the SEC from time to time.

We believe VOR33 and VCAR33 could be highly synergistic as a Treatment System, potentially enabling prolonged remissions or cures in the post-transplant setting. We intend to investigate the VOR33/VCAR33 Treatment System, entailing VOR33 eHSC therapy followed by VCAR33 as a companion therapeutic, initially for transplant-eligible patients suffering from AML. We believe VCAR33 could be a potent anticancer therapy that, when combined with VOR33, could help obviate severe on-target myeloablative toxicities and unlock the efficacy potential of VCAR33. In addition, in this setting, VCAR33 T cells could be sourced from the same cell source as VOR33 (allogeneic cells), which may provide benefits such as a healthier, more abundant cell source alongside lower risk of host T cells attacking CAR-T cells, thereby potentially prolonging persistence. If our anticipated trials for the VOR33/VCAR33 Treatment System are successful, we will have the potential to provide a single-company solution for patients suffering from certain hematological malignancies.

Our first multi-targeted Treatment System is comprised of VOR33-CLL1 multiplex-edited eHSC therapy and VCAR33-CLL1 multi-specific CAR-T therapy. Knocking out CD33 and CLL-1 through gene editing offers a promising new approach to treating patients with AML using our novel eHSC platform. Our research demonstrates that multiplex genome editing of allogeneic hematopoietic stem cells may represent another exciting strategy to efficiently and safely edit multiple genes in blood stem cells, allowing the potential use of multi-targeted blood cancer therapies.

  • Leveraging our proprietary Vor platform, we are exploring additional surface targets such as CD123, EMR2, and CD5 including multiplex genome engineering approaches where multiple surface targets are removed.
  • We are conducting ongoing discovery efforts in commonly transplanted hematologic malignancies.

AML: acute myeloid leukemia; MDS: myelodysplastic syndrome; MPN: myeloproliferative neoplasm

Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults and is characterized by excessive proliferation of myeloid stem cells and their failure to properly differentiate into mature blood cells.1 There are an estimated 42,500 new diagnoses of AML each year in the United States, Europe and Japan.2, 3 The average five-year survival rate for patients with AML is less than 30%,4 but there are significant differences in prognosis depending on several factors, including the age of the patient at diagnosis.

For many of these patients, the only way to achieve durable remission or a cure is through hematopoietic stem cell transplant (HSCT), a procedure in which stem cells are obtained from matched healthy donors and administered following myeloablation to patients, resulting in reconstitution of the patient’s hematopoietic system with donor-derived cells. Over the past 20 years, there has been an increasing trend in allogeneic transplants for AML. There were over 16,000 allogeneic HSCT procedures performed in the United States between 2013 and 2017 for the treatment of AML. Despite this, approximately 40 percent of AML patients relapse within two years of their transplant and face an extremely poor prognosis, with two-year survival rates of less than 20%. Though targeted therapies are an effective treatment for many patients in transplant settings who relapse, these therapies are limited by toxicities resulting from the expression of the surface targets on healthy cells, including these new transplanted cells, which is referred to as on-target toxicity.

CD33 is an attractive target for the development of AML therapeutics based on preclinical and clinical results from third parties demonstrating the ability of anti-CD33 directed therapies to deplete tumor cells. However, CD33-directed therapeutic approaches have had limited impact in improving the prognosis of patients with AML due in part to on-target toxicity.

1. Leukemia – Acute Myeloid – AML: Statistics. Available at: https://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics#:~:text=AML%20is%20the%20second%20most,of%20diagnosis%20is%20age%2068.
2. Cancer Stat Facts: Leukemia — Acute Myeloid Leukemia (AML). Available at: https://seer.cancer.gov/statfacts/html/amyl.html
3. O. Visser. Incidence, survival and prevalence of myeloid malignancies in Europe. EJC. Avaliable at: https://www.ejcancer.com/article/S0959-8049(12)00469-8/fulltext
4. Acute Myeloid Leukemia (AML) SEER Survival Rates by Time Since Diagnosis, 2000-2016. Available at: https://seer.cancer.gov/explorer/application.html?site=96&data_type=4&graph_type=6&compareBy=sex&chk_sex_1=1&chk_sex_3=3&chk_sex_2=2&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_display=2

Posters and Presentations


Vor Scientific Presentations

European Hematology Association Hybrid Congress: June 9 – June 12, 2022

American Society of Gene & Cell Therapy 25th Annual Meeting: May 16 – May 19, 2022

International Society of Cell Therapy (ISCT) 2022: May 4 – May 7, 2022

Keystone Symposia Precision Genome Engineering Meeting: April 27 – May 1, 2022

ASH 63rd Annual Meeting: December 11 – December 14, 2021

SITC 36th Annual Meeting: November 10 – November 14, 2021

ESGCT Annual Congress 2021: October 19 – October 22, 2021

ASGCT 24th Annual Meeting: May 11, 2021


Relevant Scientific Publications

Decentralized manufacturing: from stem cell transplants to the next generation of cellular immunotherapies. Li M, Kassim S. Cell & Gene Therapy. 2020 June.

Gene-edited stem cells enable CD-33 directed immune therapy for myeloid malignancies. Borot F, Wang H, Ma Y, Jafarov T, Raza A, Ali AM, and Mukherjee S. PNAS. 2019 Mar

Engineering resistance to CD-33 targeted immunotherapy in normal hematopoiesis by CRISPR/Cas9-deletion of CD33 exon 2. Humbert O, Laszlo GS, Sichel S, Ironside C, Haworth KG, Bates OM, Beddoe ME, Carrillo PR, Kiem HP, Walter RB. Leukemia. 2019 Mar; 33(3):762-808