TransACT enhances detection and characterization of translocation events from high-throughput sequencing data at base-pair resolution for gene editing products

Our Platform
We have built a proprietary technology platform
The key components of the Vor Bio platform are:

Stem cell biology and
manufacturing expertise
We have built an extensive understanding of the biology of Hematopoietic Stem Cells (HSCs) to enable our eHSCs to retain their cellular viability and functionality during manipulation. In addition, we have built process development expertise centered around HSCs, enabling us to process these cells quickly, precisely, reproducibly, and efficiently for patients. We have invested in internal in-house clinical GMP manufacturing capabilities and facilities that allow us to leverage our expertise and to maintain strategic control over the manufacturing process

Applying genome
engineering to HSCs
Recent developments in genome engineering allow permanent changes to DNA in cells and all their progeny. We have assembled a team with extensive experience in applying genome engineering technologies to HSCs, which display distinct DNA repair mechanisms compared to many other cell types. We possess expertise in a variety of genome engineering technologies including CRISPR-Cas9, CRISPR analog enzymes, and base editing, and we are capable of multiplex editing using a variety of techniques.

Unlocking the potential of
targeted therapies
We believe our eHSCs are a solution to the lack of tumor-specific targets and enable selective cancer targeting. Our solution allows for treatment with potent agents, such as CAR-T therapies, whose utility and applicability have previously been limited, in part, by on-target toxicity. We are designing and developing targeted therapies that are optimized for use with our eHSCs in the post-HSCT setting.
Our goal is to replace the patient’s HSCs with next-generation, treatment-resistant eHSCs that unlock the potential of highly potent targeted therapies by leveraging our platform and expertise.

Traditional Paradigm
for Drug Development
Target cancer antigens to kill cancer cells

Problem
Few unique cancer antigens, so drugs kill both cancer and healthy cells through on-target toxicity

Vor Bio Paradigm:
Engineered HSCs (eHSCs)
Remove target expression on healthy cells so that killing is cancer-specific
Related Publications
Multiplex Deletion of Myeloid Antigens CD33 and CLL-1 by CRISPR/Cas9 in Human Hematopoietic Stem Cells Highlights the Potential of Next-Generation Transplantation for AML Treatment
A Novel Scalable Electroporation Platform for the Manufacturing of Gene Modified Hematopoietic Stem and Progenitor Cell Therapies
Novel Automated, Functionally Closed System for Rapid Immunomagnetic Negative Selection of T Cells
Multiplex Editing of Hematopoietic Stem and Progenitor Cells (HSPCs) with CRISPR Cas Nucleases Achieves High On Target Editing with Undetectable Translocations
Multiplex Base Editing in Human Hematopoietic Stem and Progenitor Cells (HSPCs) Enables Efficient Removal of Multiple Surface Antigens in Acute Myeloid Leukemia (AML) Immunotherapy
G-CSF/Plerixafor Dual-Mobilized Donor Derived CD33CAR T-Cells as Potent and Effective AML Therapy in Pre-Clinical Models
Multiplex Engineering of Human CD34+ HSPCs Enables Dual Gene Knockout While Maintaining High Engraftment Potential and Safety
Knock Out of CD123 or CLL-1 by CRISPR-Cas9 Editing From Human Hematopoietic Stem Cell Transplantations Provide New Possibilities for Increasing Therapeutic Index and Safety for AML Treatment